Assessment of Native Mussel Populations in the St. Clair Delta a Quarter-Century after the Dreissenid Invasion

David Zanatta and Matthew Rowe

Central Michigan University

Institute for Great Lakes Research

Outline

- Background information
- The decline and current status of unionid mussels in Lake St. Clair
- Population structure and genetic status of L. siliquoidea
- Conclusions, implications, and future research directions

Outline

- Background information
- The decline and current status of unionid mussels in Lake St. Clair
- Population structure and genetic status of L. siliquoidea
- Conclusions, implications, and future research directions

Unionid Mussels

- Native freshwater mussels (unionids) are a diverse group of bivalve mollusk
 - Largest diversity is in North America (300 species)
- 40 species known in the Lower Great Lakes
- 37 species known historically in Lake St. Clair
 - 22 species recorded in the last decade.

Unique Life Cycle

Unionid Functional Roles

- Filtration of the water column
- Biodeposition of nutrients
- Bioturbation of sediments
- Habitat for other species
- Resource limitation
- Food source
- Bioindicator

(Vaughn and Hakenkamp 2001)

Unionid Plight

- Most imperiled group of organisms in North America
- 70% of native species extinct of vulnerable to extinction
 - 36 species thought to be extinct
 - 165 species vulnerable to extinction
- Causes of decline include:
 - Habitat destruction
 - Pollution
 - Changes in host fish communities
 - Commercial exploitation
 - Invasive species

Strayer et al. 2004, Bogan et al. 1993, www.dnr.wi.gov

Dreissenid Mussel Biology

- Dreissenid Mussels
 - Highly invasive European bivalve mollusks

High reproductive potential via

Photo by Randy Westbrook, USGS

Dreissenid Fouling

- Fouling of unionids by dreissenids is a primary cause of mortality
 - Interfere with feeding
 - Interfere with respiration
 - Prevent closing
 - Prevent burrowing
 - Interfere with locomotion
 - Hinder reproduction

Outline

- Background information
- The decline and current status of unionid mussels in Lake St. Clair
- Population structure and genetic status of L. siliquoidea
- Conclusions, implications, and future research directions

Lake St. Clair

Unionid density (m²)

Avg. = 1.93 unionids/m²

1986

Unionid density (m²)

Dreissenid density (m²)

Unionid density (m²)

Dreissenid density (m²)

Unionid density (m²)

Dreissenid density (m²)

A New Hope? Unionid Refuges

First unionid refuges found in Lake Erie coastal

WetlandS (Metzger Marsh, Nichols & Wilcox 1997; Crane Creek Marsh, Bowers & De Szalay 2004, 2005, 2007)

- Dreissena densities showed significant declines between 1994 and 2001 in St. Clair_(Hunter & Simmons 2004)
- Large unionid refuge discovered and documented in the St. Clair delta 1999-2001 (Zanatta et al. 2002)
 - Very shallow <1 m
 - only a single live unionid found in water >2 m

• Exhaustive sampling: 1999-2001, 2003, 2010 (Zanatta *et al.* 2002, McGoldrick *et al.* 2009, Lucy *et al.* 2014)

Zanatta et al. (In Review) NE Naturalist

49 discrete potential "refuges" (bays, rivermouths, coastal wetlands) 124 Sites

69

12

Zanatta et al. (In Review) NE Naturalist

Google earth

376

62

NOAA

© 2013 Cnes/Spot Image Image © 2013 TerraMetrics 42.360444* Ion - 81.431200° elev 162 m

224

lat

Zanatta et al. (In Review) NE Naturalist

Zanatta et al. (In Review) NE Naturalist

Refuge Habitats

- Many factors my be contributing to unionid refuge habitats (Sherman et al. 2013)
 - Soft sediments
 - Fluctuating water levels
 - Wave action
 - Predation
 - Water flow pattern

Retain remnant unionid populations

Outline

- Background information
- The decline and current status of unionid mussels in Lake St. Clair
- Population structure and genetic status of L. siliquoidea
- Conclusions, implications, and future research directions

Bottlenecks

- Bottlenecks
 - <u>Demographic</u>: Reduction in effective population size

- <u>Genetic</u>: Reduction in genetic diversity

Importance of Genetic Diversity

Loss of adaptability

- Genetic drift
- Inbreeding
- Extinction

Objectives

- 1) How much genetic diversity is present in the remnant populations of Fatmucket?
- 2) What is the level of gene flow occurring between sampling locations within the St. Clair delta and surrounding watersheds?
- 3) Is genetic differentiation related to geographic isolation at this scale?
- 4) Is there any evidence of a recent genetic bottleneck in the Fatmucket populations?

Species Selection

Fatmucket (Lampsilis siliquoidea)

- Wide distribution
- Sexually dimorphic
- Muddy or sandy substrates in slow moving waters
- Lifespan >20 years
- Mantle lure
- Host species generalist

Site Selection

- Remnant St. Clair River Delta populations
 - Delta sample sites selected by visiting productive sites previously surveyed (Zanatta et al. 2002, McGoldrick et al. 2009, Lucy et al. 2014)
- Tributary populations unaffected by dreissenids
 - Selected by scouting accessible locations and investigating sites identified by museum records (Ohio State

University Freshwater Bivalve Database)

Tissue Collection

Methods: Genetics

Electropherogram/Allele Scoring

Genotyping

Genetic Diversity

- Amplified 8 polymorphic microsatellite loci
 - Originally developed for Lampsilis abrupta
- 6 43 alleles per locus
- Average of 21 alleles per locus

Study	Common Name	Species	Avg. Polymorphism
Kelly & Rhymer 2005	Yellow Lampmussel	Lampsilis cariosa	21.86
Zanatta & Murphy 2007	Northern Riffleshell	Epioblasma torulosa	13.70
Zanatta et al. 2007	Wavy-rayed Lampmussel	Lampsilis fasciola	15.40
Zanatta & Murphy 2008	Snuffbox	Epioblasma triquetra	15.20
Current Study	Fatmucket	Lampsilis siliquoidea	21.63

Allelic Richness

Sampling Location	Avg. Allelic Richness		
Clinton River	4.03		
Pollet Bay	4.08		
Goose Bay	4.03		
Big Musc. Bay	4.26		
Pocket Bay	3.84		
Bass Bay	4.15		
Belle River	4.10		
Pine River	3.85		
Black River	3.77		
Average	4.01		

No statistical difference between sampling locations (p = .919)

Population Structure

- Individual based analyses using genotype data
- Predicts the most probable number of populations (K)
- Predicts the most probable population of origin for each sample

– STRUCTURE

Indicated one interbreeding population

Population Structure (Example)

Location Location 2 Locat

Location 3

Example: K = 2

Population Structure

Genetic Differentiation: F_{ST}

	Clinton River	Pollet Bay	Goose Bay	Big Musc. Bay	Pocket Bay	Bass Bay	Pine River	Belle River	Black River
Clinton River								Among	
Pollet bay	0.034*						Sam	pling Locati ,3%	ons
Goose Bay	0.028*	0.004*							Among
Big Musc. Bay	0.060*	0.022*	0.007			Withi Individi	n ual		_Individual s 38%
Pocket Bay	0.054*	0.074*	0.069*	0.099*		s 59%			
Bass Bay	0.011	0.028*	0.021*	0.052*	0.057*		Globa	l F _{ST} = .036 p = .0001	
Pine River	0.030*	0.041*	0.033	0.062*	0.085*	0.024*			
Belle River	0.036*	0.024*	0.003*	0.015*	0.071*	0.020*	0.037*		
Black River	0.046*	0.044*	0.043*	0.080*	0.090*	0.022*	0.050*	0.045*	
Significant	(*) = n <	0 0014	after Bo	nferroni	correctio	n			

Genetic Differentiation: F_{ST}

	Clinton River	Pollet Bay	Goose Bay	Big Musc. Bay	Pocket Bay	Bass Bay	Pine River	Belle River	Black River
Clinton River									
Pollet bay	0.034*								()
Goose Bay	0.028*	0.004*							
Big Musc. Bay	0.060*	0.022*	0.007			1977 1977 1977			
Pocket Bay	0.054*	0.074*	0.069*	0.099*				1	
Bass Bay	0.011	0.028*	0.021*	0.052*	0.057*	0 10 20	40 60 80	n 👗	
Pine River	0.030*	0.041*	0.033	0.062*	0.085*	0.024*			
Belle River	0.036*	0.024*	0.003*	0.015*	0.071*	0.020*	0.037*		
Black River	0.046*	0.044*	0.043*	0.080*	0.090*	0.022*	0.050*	0.045*	
Significant(*) = $p < 0.0014$ after Bonferroni correction									

Isolation by distance

Geographic Distance (km)

Bottleneck

	More		Sensitivity	Less
Population	I.A.M	T.P.M	S.M.M	Mode Shift
Big Muscamoot Bay	0.006*	0.986	0.990	Normal L-shaped
Goose Bay	0.014*	0.986	0.996	Normal L-shaped
Pollet Bay	0.098	0.875	0.963	Normal L-shaped
Bass Bay	0.010*	0.320	0.527	Normal L-shaped
Pocket Bay	0.191	0.809	0.844	Normal L-shaped
Belle River	0.010*	0.996	0.998	Normal L-shaped
Black River	0.320	0.973	0.986	Normal L-shaped
Clinton River	0.125	0.980	0.980	Normal L-shaped
Pine River	0.006*	0.809	0.902	Normal L-shaped
All Sites	0.010*	0.994	0.996	Normal L-shaped

Significant(*) = P < 0.05 No tests significant after bonferroni correction (α = 0.002) (excludes "All Sites")

Outline

- Background information
- The decline and current status of unionid mussels in Lake St. Clair
- Population structure and genetic status of L. siliquoidea
- Conclusions, implications, and future research directions

Conclusions

- 1) Still diverse remnant unionid community in the St. Clair delta
 - Among highest quality refuges in the lower Great Lakes
 - Continuing declines in WIFN Territory?
 - Continued monitoring recommended
- 2) Genetic diversity did not appear to be compromised by recent dreissenid invasion
- 3) Sampling locations appear to comprise a single interbreeding population
- 4) Genetic differentiation was significantly correlated with geographic distance
- 5) Little evidence was found supporting a recent genetic bottleneck
 - Insufficient time since dreissenid invasion?
 - Insufficient demographic bottleneck to produce genetic bottleneck?

Rowe and Zanatta (2014) Biological Invasions

Future Directions

- The results for Fatmucket mussels represent a "best case scenario"
- Further studies should be conducted with less common and more sensitive species
- Monitoring of unionids in Lake St. Clair and St. Clair River should continue in order to protect the Great Lakes' fragile mussel assemblages and populations

Funding Sources

Michigan DEQCoastal Zone Management Program

U.S. Fish and Wildlife Service

 Great Lakes Fish and Wildlife Restoration Act, 2010 Grant

Central Michigan University

Acknowledgments

<u>CMU</u> Jessica Sherman Tom Biber Jennifer Bergner Mariah Scott Lindsey Kolich Jay Twitchel Erin Bertram

<u>University of Guelph</u> Ryan Gregory

UNIVERSITY &GUELPH Fisheries and Oceans Canada Todd Morris

Walpole Island First Nation

Michigan DNR/DEQ Michael Thomas Ken Koster Roy Beasley David Dortman

DTE dive team

Questions? Papers and more info: http://people.cst.cmich.edu/zanat1d/